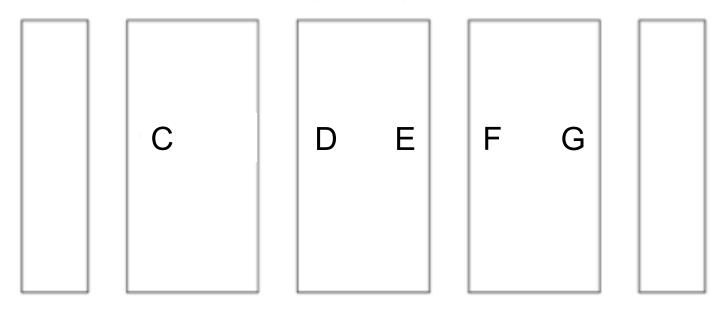
Chem 108: Lab


Week 8

Experiment:

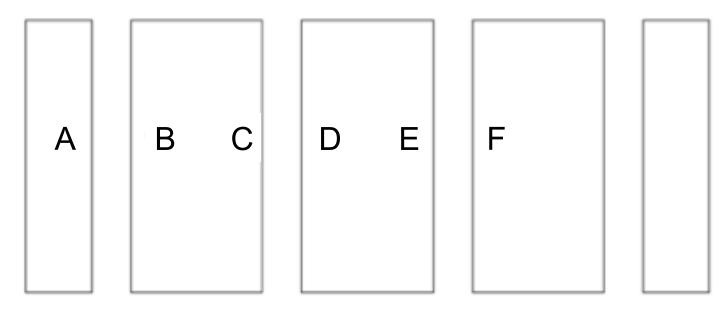
What's My Formula? II

Sign in; Sit with Group.

Front of Lab

Work with the reorganized groups from last week's lab.

Chem 108: Lab


Week 8

Experiment:

What's My Formula? II

Sign in; Sit with Group.

Front of Lab

Work with the reorganized groups from last week's lab.

DUE Today

Names, Ions, Formulas

Complete Report Form
pp. 109-114
1 form per Individual or
1 per group:
With names of only those
who contributed on
the form.

Name:	
Section:	

Report Form - Name, Ions, and Formula Activity

Name	Separated Ions	Formula
Sodium chloride	1 Na' + 1 Cl	NaCl
Calcium chloride	1 Ca2+ + 2 Cl-	CaCl ₂
Lithium carbonate		
Barium hydroxide		
	K+SO ₄ s-	
	_NH ₄ * + CO ₂ *-	
		FeBr ₂
		Fe ₂ (SO ₄) ₃
Copper(II) nitrate		
Tin(IV) fluoride		
	Al ⁵⁺ +SO ₃ ⁵⁻	
		Ca(NO ₂) ₂
		PbCl ₄
	Fe ²⁺ +PO ₄ ³⁻	
		HgBr ₂
Calcium acetate		_
Cobalt(III) sulfate		

Report Form - Name, Ions, and Formula Activity

109

Bonds: Molecular Shapes: Molecular Modeling

Chem 108 / Dr. Rusay

Names:							
	Molecular Mode	ling Report Form	!				
Experiments Lab Ma	nual. Complete the fol	lel Lab, pp. 97-103, lowing modeling related buted to the work, on th	d exercises and include				
for these compounds u class information). The the difference in electrons	sing differences in their second column is for the onegativity between the	compounds. The bonding respective electronegativity electronegativity difference 2 different atoms in the coivity of the two atoms, (Electronegativity of the two atoms, (Electronegativity of the two atoms).	ty values (refer to the in nee, the absolute value of compound, $ \mathrm{EN}_2 - \mathrm{EN}_1 $.				
Compound	$ \mathbf{EN_1} - \mathbf{EN_2} $	$\frac{\mathrm{EN}_1 + \mathrm{EN}_2}{2}$	Bonding Type				
HF							
HCl							
HBr							
HI							
CsF							
NaF			<u> </u>				
CaO	http://molview.org						
BaO		<u> </u>	9 				
NH ₃							
CH ₄							
CCl ₄							
omplete	ed first	& seco	nd page	es checked			
SO_2	Before	leaving	lah				
H_2	501010		132				

Have c

What's My Formula? Identification

Unknowns

$$BaCl_{2} \cdot 2H_{2}O$$

$$BaCl_{2} \cdot 2H_{2}O(s) \longrightarrow BaCl_{2}(s) + 2H_{2}O(g)$$

$$Unknown Sample$$

$$CaSO_{4} \cdot 2H_{2}O$$

$$CaSO_{4} \cdot 2H_{2}O(s) \longrightarrow CaSO_{4}(s) + 2H_{2}O(g)$$

$$Unknown Sample$$

$$CaSO_{4} \cdot 2H_{2}O(g)$$

$$Salt$$

$$79.09\%$$

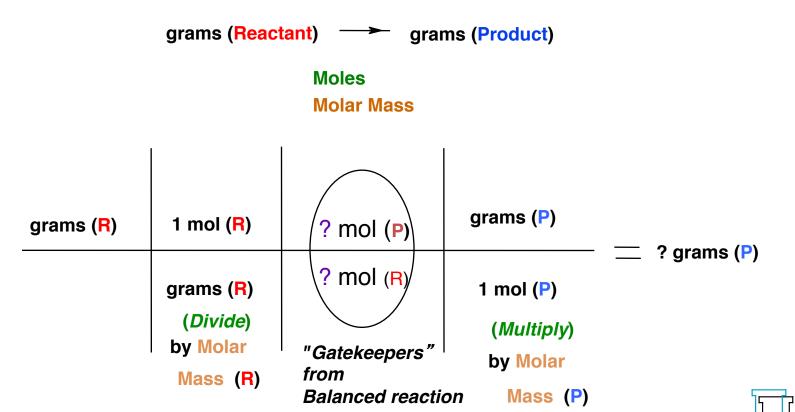
 $NaHCO_3$

$$\begin{array}{c} 2 \ NaHCO_3(s) \longrightarrow Na_2CO_3(s) + \ H_2O(g) + \ CO_2(g) \ 63.08\% \\ \text{Unknown Sample} & \text{Salt} \\ KHCO_3 & \end{array}$$

$$2 \ KHCO_3(s) \longrightarrow K_2CO_3(s) + H_2O(g) + CO_2(g)$$
 69.02% Unknown Sample Salt

Experimental Calculation:

% Salt = (Mass sample - Mass after heating) / Mass sample x 100 Comparison to Calculation(s) for a, b, c, d FROM last week:
% Salt = Molar Mass Salt Molar Mass Unknown Sample x 100


What's My Formula?

Your group obtained 2 to 5 unknowns. Complete the experimental procedures and submit one complete report form for each unknown with partner's names on the data form page & a complete set of calculations for each unknown with % Yield & Theoretical Yield **Calculations** (replacements for pg. 36)

Complete Report Forms
DUE Today

	Name:	
	Section:	
	Report Form – What's My Formula	
Unl	known Number	
Ma	ss, Evaporating Dish + Unknown	
Ma	ass, Evaporating Dish	
	iss, Unknown	
	Evaporating Dish + Salt (Product), after heating	
	Evaporating Dish + Salt (Product), after 2 nd heating	
Ma	ass Salt (Product)	
	% Salt (Product)	
	Mass Salt (Product) / Mass Unknown x 100 = **Molar Mass Salt (Product)	
	Closest from last week's 4 lab calculations	
	Unknown Identification	
	Official deficition and the second	
	Calculations:	
% Salt (P	Calculations:	Sample v 100
% Salt (P		Sample x 100
% Salt (P	Calculations:	Sample x 100
% Salt (P	Calculations: roduct) = Mass Salt (Product), after heating / Mass Unknown	Sample x 100
,	Calculations: roduct) = Mass Salt (Product), after heating / Mass Unknown	Sample x 100
,	Calculations: Product) = Mass Salt (Product), after heating / Mass Unknown cal Yield:	Sample x 100
Theoretic	Calculations: roduct) = Mass Salt (Product), after heating / Mass Unknown cal Yield: 1 mol (R)	Sample x 100
Theoretic	Calculations: roduct) = Mass Salt (Product), after heating / Mass Unknown cal Yield: 1 mol (P)	Sample x 100
Theoretic	Calculations: roduct) = Mass Salt (Product), after heating / Mass Unknown cal Yield: 1 mol (R)	Sample x 100
Theoretic	Calculations: roduct) = Mass Salt (Product), after heating / Mass Unknown cal Yield: 1 mol (P)	Sample x 100
Theoretic	Calculations: roduct) = Mass Salt (Product), after heating / Mass Unknown cal Yield: 1 mol (R)	Sample x 100
Theoretic	Calculations: roduct) = Mass Salt (Product), after heating / Mass Unknown cal Yield: 1 mol (P)	Sample x 100
Theoretic	Calculations: roduct) = Mass Salt (Product), after heating / Mass Unknown cal Yield: 1 mol (P)	Sample x 100
Theoretic	Calculations: roduct) = Mass Salt (Product), after heating / Mass Unknown cal Yield: 1 mol (P)	Sample x 100

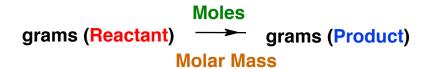
Theoretical Mass Calculations for any Reaction Reactants → Products

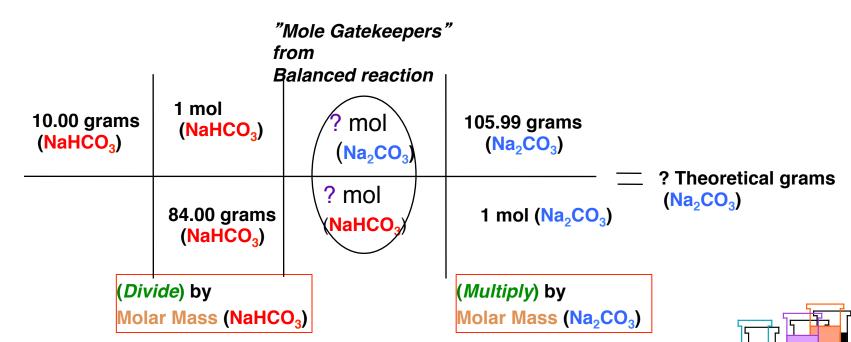
What's My Formula? % Yield (Example)

Heating 10.00 g of an unknown determined to be sodium bicarbonate and actually obtaining 5.98 g of sodium carbonate. What is the Percent Yield?

First calculate the **theoretical yield**. (Adaptation of your calculations last week.)

It considers in the calculation that everything went perfectly, and is based on the assumption of 100% accuracy.

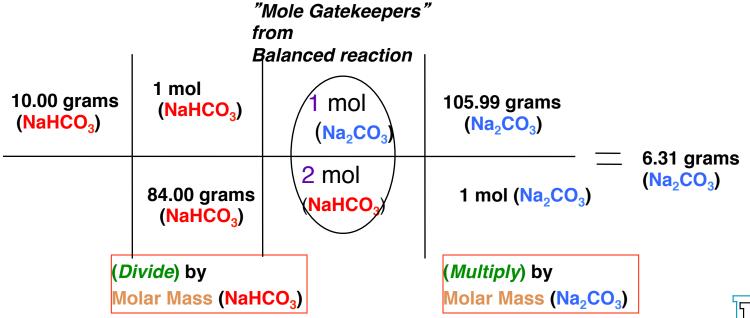

Yield is actual; based on reality.


$$2 NaHCO3(s) \longrightarrow Na2CO3(s) + H2O(g) + CO2(g)$$

Reactant = 10.00 g Product = ? g (Theoretical) Molar Mass = 84.00 g/mol Molar Mass = 105.99 g/mol

 $2 \bmod NaHCO_3(s) : 1 \bmod Na_2CO_3(s)$

Theoretical Mass Calculations Reactants ←→ Products



$$2 NaHCO3(s) \longrightarrow Na2CO3(s) + H2O(g) + CO2(g)$$

Theoretical Mass Calculations Reactants → Products

$$2 NaHCO3(s) \longrightarrow Na2CO3(s) + H2O(g) + CO2(g)$$

What's My Formula?

"% Yield" is used to measure the efficiency (similar to "accuracy") of any reaction in yielding "product(s)" (on the right of an equation) versus the calculated (theoretical) amount of the product based on the amount of "reactant(s)" (from the left of the equation) using the relative number of moles of each in a balanced chemical equation.

% Yield = actual grams of product / theoretical (calculated) grams of product x 100

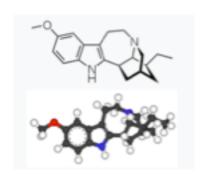
For example, heating 10.00 g of sodium bicarbonate and actually obtaining 5.98 g of sodium carbonate. After calculating the theoretical yield:

$$2 NaHCO3(s) \longrightarrow Na2CO3(s) + H2O(g) + CO2(g)$$

 $2 \bmod NaHCO_3(s) : 1 \bmod Na_2CO_3(s)$

```
Reactant = 10.00 \text{ g} Product = 6.31 \text{ g} (Theoretical)
Molar Mass = 84.00 \text{ g/mol} Molar Mass = 105.99 \text{ g/mol}
```

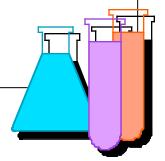
% Yield = 5.98 g (actual) / 6.31g (theoretical) x 100 = **94.6%**


QUESTION

♠ A synthetic reaction produced 2.45g of Ibogaine, C₂₀H₂₆N₂O, a natural product with strong promise in treating heroin addiction, the calculated theoretical yield was 3.05g, what is the % yield?

A) 19.7% B) 39.4% C) 80.3% D) 160.6%

C₂₀H₂₆N₂O (Ibogaine) Tabernanthe iboga



ANSWER

If a reaction produced 2.45g of Ibogaine, C₂₀H₂₆N₂O, a natural product with strong promise in treating heroin addiction, and the theoretical yield was 3.05g, what is the % yield?

A) 19.7% B) 39.4% C) 80.3% D) 160.6%

% yield = 2.45g / 3.05g x 100 = 80.3%

Post Lab: Compounds with the Same Formula $[eg. C_oH_8O_4]$

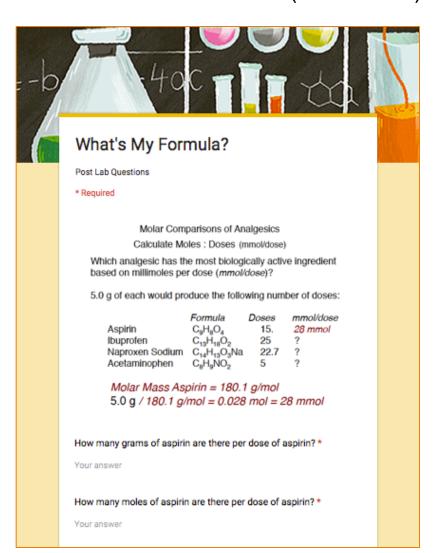
Molar Comparisons of Analgesics

Calculate Moles: Doses (mmol/dose)

Which analgesic has the most biologically active ingredient based on millimoles per dose (mmol/dose)?

5.0 g of the active ingredient would produce the following number of doses:

Caffeic acid			
Formula	Formula	Doses	mmol/dose
Aspirincular weight	C ₉ H ₈ O ₂ 0.15742 u	15.0	1.8 mmol/dose
Ibuprofemors	C ₁₃ H ₁₈ O ₂	25.0	?
Naproxen Sodium	$C_{14}H_{13}O_{3}Na$	22.7	?
Acetaminophen	$C_8H_9NO_2$	5.0	?
c 12.0107 u × 9	60.001 %	5	
Molar Mass Aspirin = 1	180.1 g/mol		


5.0 g / 180.1 g/mol = 0.028 mol/15 doses = 1.8 mmol/dose

Molar Comparisons of Analgesics Calculate Moles: Doses (mmol/dose)

Post Lab:

Must submit Individually From calendar link

DUE Today

